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1 A problem of the factorization

Let
anu™(2) + an_1u™ V(2) + ... + agu(z) =0 (1)

be an ordinary differential equation with constant coefficients,
POA) = gpd® + oy i N 4. ag

the characteristic polynomial of this equation. Let us assume that P()\) admits a represen-
tation
P(X) = PL(A) P2 (X),

where P (1)), P2(}) are polynomials having no common zeros. Evidently, every solution u(z)
of the equation (1) can be written as

u(z) = u1(2) + ua(2),

where u; (2) is a solution of a differential equation with the characteristic polynomial P;())
and ug(z) is a solution of a homogeneous differential equation with the characteristic poly-
nomial P(A). The problem of a factorisation was set up by J. Adamar for the case of partial
differential equations of finite order with constant coefficients. In this case, an additive fac-
torisation of solutions of homogeneous equations is always possible [1], [2].

Napalkov has demonstrated, (see, for example, [3], p. 210), that for convolution type
operators such a factorisation is not always possible. He solved the following problem.

Let us consider an equation

Mi(w) = Y ewu®(z) =0, @
k=0

o0
whose characteristic function L(A) = Y cxAF is an entire function of exponential type. Let us

k=0
assume that L(A) = L1(\)La()), where Li()), Ly()) are also entire functions of exponential
type. In what case any entire solution u(z) of equation (2) can be written in the form

u(z) = u1(2) +ua(z), Mp;(u) =0 (=1, 2)? (3)
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Theorem 1. Any entire solution u(z) of equation (2) can be represented in the form (3) if
and only if
1= L1(A)e1(A) + La(N)gp2(X), (4)

where p1(A), p2(X) are some entire functions of exponential type.

o0
Let y(t) = Y cxk!/t**! be the function associated according to Borel with the function
k=0
L()) and let D be the adjoint diagram of the function L()). Then, by the Cauchy formula,
the equation (2) can be represented as

Myw) = 5 [+ )it =o, (5)
C

where C is a closed contour surrounding D. The equation (5) is a convolution equation.

A deduction of condition (4) uses algebraic and functional methods.

In the paper [4] Korobeynik obtained some conditions for factorisation of convolution
operators, using non-trivial decompositions of zero with respect to a system of exponents.
Moreover, he extended the ”sufficient part” of Theorem 1 to a rather general situation of
generalized convolution operators.

The proof of sufficiency of condition (4) may be obtained, for example, from the relation

u(z) = Mi(u) = Mp,p, (u) + MLy, (u) = uz(2) + u1(2).

Using the theorem on approximation of an entire solution u(z) by means of elementary
solutions and also the continuity of the operators

MLI(PI’ ML2<.02’ MLI’ Msz

one can show that

MLJ' (U‘J) = 0.

Further, Theorem 1 can be easily transferred to the case when the characteristic function
has an arbitrary number of factors:

L(A) =Li(A)-...- Lyp(A), m>2.
Then the condition (4) can be rewritten as

< L(Y

1=) N;j(A) i), where N;(\)=-—-%.

Now let the characteristic function L()) of equation (2) be an entire function of class
[, 0], ie. it has order < 1 and it is of minimal type. Let us assume that L()) has an infinite
number of zeros and all they are simple. It is known that in this case the operator M, can
be applied to any analytical function at points of its regularity, any analytic solution of (2)
is univalent everywhere and its domain D is convex. Let us assume that L(A\) = L;(\)Lo()),
where L1(A) and Ly()) belong to [1, 0]. The following theorems hold ([5]).

14
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Theorem 2. Let us assume that there exist functions o1, @o in [1,0] with property (4). Then
any analytic solution u(z) of equation (2) can be represented in the form (3), and if u(z) is
analytic on D, then the functions u;(z) are analytic on D.

Theorem 3. Let us assume that for any disk K with the center at zero, any analytic solution
of equation (2) on K has the form (8), where uj(z) are analytic functions on K. Then there
exist functions @1, @2 in [1,0] with property (4).

Thus, if for any disk K with the center at zero, any solution u(z) of equation (2) analytic
on K has the form (3), then representation (3) is true for any analytic solution on D .

In connection with this the following question arose. Let us fix a disk K with the center
at zero and assume that any solution u € H(K) has the form (3). Would any solution
u(z) € H(K1) K1 C K have the form (3)? In [6] a counterexample of an entire function of
exponential type L(A) = L;(A)L2()) is constructed.

2 Case of generalized derivatives

Let =
fz) =) a2
k=0

be an entire function of order p and type o # 0, co with ay # 0. Let us assume that there
exists the limit
lim kY°|ag|* = (cep)'/®. (6)
k—o0

Further, let
oo
a(z) = Z up 2"
k=0

be an arbitrary function analytic on the disk U = {z : |2| < R}, 0 < R < oo. The function

o

(DFu)(2) = ) tigtn (7)
k=0

k_k
Ok+tn
is called the generalized derivative in the sense of Gelfond-Leontyev of order n of the function
u(z) generated by the function f(z) [7].
According to condition (6), there exists the limit

(637 1/k ie

]

lim l
k—o00 Ak4n
hence the series (7) converges on the disk U and the function D}u is analytic on the same
disk.
Notice the following easily checked properties of the operator (7):
1) D;}(ul +ug) = D}L’U,l + D?’U,Q;
2) if C' is a constant, then D}(Cu) = CD}(u);
3) D} (Dju) = D}”Jr”u;
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4) D}(f(Az)) = A" f(Az), where X is a constant;

5) if f(z) = e?, then D} =d"/dz";
these properties show that the operator D;} is really a kind of derivative of order n;

6) the operator D7 is continuous: if a sequence un,(2) converges to u(z) uniformly inside
of U, then the sequence D?(um) converges to Dfu uniformly inside of U, see [7], p. 61.

Let us consider a special case of the generating function:

o) 00 ok
flzi=) mef =14+ Y rort 8
2 2 ST lE) ®)
where p(z) = apaP + -+ + ajz is a polynomial such that p(k) # 0(k € N). For large k we
have
TR
BTk (k)P

whence property (6) holds with p = 1/p, o = pla,|'/P. The function f(z) is an entire function
of order 1/p and type o. For p(z) = = we have f(z) = e*. If f(z) is given by (8), then

AP
Dtu(z) = Z % ? “muk)(3), 9)
k=n

where ([7], p. 75)

AP = pak) = Chpnlk = 1) + ...+ (=1)Fpa(0),
pnz) = p@)p(—1)...p(z —n+1).
Notice that generalized derivatives (7) are defined only for functions analytic on a neigh-
bourhood of zero. If f(z) is given by (8), then generalized derivatives (9) are defined at all

points where u(z) is analytic.
Let us consider now the equation

o0
Mp(u) = e Dfu =0, (10)
k=0

whose characteristic function L()) has order pp, let us assume that p; > p and that all zeros
of L()) are simple. It is known, that the series in (10) converges uniformly on any bounded
domain, when the order v of u(z) satisfies the condition

p o Pl (11)
prL—p
Let us assume that L(A) = L1(A)L2()), where L;(A) belongs to [p1, oo]. Leontiev ([8])
proved:

Theorem 4. Any solution u(z) (with order v satisfying condition (11)) can be represented
in the form (3) if and only if condition (4) with ;()) € [p1, 00] is satisfied.

Now let us fix a number h such that

PP1
pPL—p

p<h<
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In the paper [10] the problem of factorization has been solved for the following subclasses of
entier functions u(2):

1) having order < h,

2) [h, o],

3) [h, 00).

Criterions have the form (4).

A very general definition for the operator of a generalized differentiation was given by
Leontyev in 1965 ([9]). Let {Py(2)} be some basis system of functions in H(D). Then, if u(z)
is represented uniquely as a series u(z) = Y 7, dpPx(2), convergent on D (or on its part),
then one defines D}u(z) = Y o, dkPi—n(2). In particular, for P,(2) = a,2", one has the
Gelfond-Leontyev operator D}‘.

In [11] under some additional conditions on {P,(z)}, the problem of factorisation has
been solved for an operator of infinite order in terms of derivatives D}. For example, these
conditions are satisfied by Faber’s polynomials and functions in Fage’s basis, constructed by
means of the differential operator with entier coefficients.

3 Equivalence of differential operator

In various places of the theory of functions, functional analysis and theory of differential
equations one often runs into problems of an equivalence of operators.

Let Ar (0 < R < o00) be the space of all univalent and analytic functions on the disk
{z € C: |2| < R} and [p, o) the space of all entier functions of order < p, or of order < p
and of type < o.

Let E; and FE5 be locally convex spaces over the field C. Linear continuous operators
A on E; and B on E; are called equivalent, if there exists a linear one-to-one and mutually
continuous map T : E; — FE3 such that TA = BT.

Let us consider a differential equation of infinite order with constant coefficients

00
ML(’U,) = Zakau = O,
k=0

whose characteristic function L()\) = Y32, axA¥ is an entire function of exponential type o.
In [12] there was proved that M (u) is equivalent to an operator of finite order D?(u) =
red dpDFu. If L(\) € [1, 00), then for equivalence of these operators in the space Ao, it
is necessary and sufficient that My (u) = Y-F_, ax.D*u with a, # 0.
In this work [12] the following problem was set up. One has to find necessary and sufficient
conditions for equivalence of continuous differential operators of infinite order with constant
coefficients

oo o0
My, (u) =) axD*u and My, (u) =Y bD*u,
k=0 k=0
where i N
Li(N) =) axX* and Ly()) =) bk
k=0 k=0
are entire functions of class [1, oo).
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In some cases one succeeded in establishing an equivalence of such operators. For example,
in the paper [12] it was done for operators e*” and e??. They are equivalent if and only if
either a = b or ab # 0.

This result was transferred by the authors to operators of infinite order with various
generalized derivatives. Moreover, as a co-product, they obtained similar results for some
operators of finite order.

Let entire functions f(2) = > 32 ax2* and g(2) = 352 Br2* have order p € (0, 0o) and
types o € (0, 00) and o, € (0 o) respectively, and o # 0, B #0, k=0, 1, ..., and the
following conditions be satisfied:

lim kl/”\/|akl (cep)t’?,  lim kP Y/1Bk| = (o1ep) V7. (12)
k—o0 k—oo

Con31der generalized derivatives in the sense of Gelfond-Leontyev of a function u(z) =
> oo ukz® in Ag generated by functions f(z) and g(z2).

It is known, ([7], p. 62) that these derivatives are equivalent in Ag. An isomorphism 7T
of the space Ap is the following:

k) _ k
T(Zukz ) = Zuka—kz .
The paper [13] contains the following results.

Theorem 5. Ifa, b € C and ab # 0, then e*Pf ~ D5 in A

Here a
Tu(z) = u(gz)
Theorem 6. Let f(z) = Y po Oakz be an entire function such that a #0, k =0,1,2,.
and "
lim {/|ogk!| =0 = 1o (0 #0, o0).
k—o0 |a|
If ab # 0, then e3P ~ €P7 in Ap (R < o).
Here
o0 a k 5
B} = Zukakk!(g) z
k=0
Theorem 7. Let f(z) =Y po Oakz and g(z) =Y oo Oﬂkz be entire functions of order p €

(0,00) and types o # 0 oo and o1 # 0, oo respectzvely, with ap #0, B #0, £k =10,1,2,...,
conditions (12) be satisfied, and

If ab # 0, then eP7 ~ D5 in Ap (R < o0).
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Here o
k
Tu(z) = Zk%(%) 2~

k=0

In the paper [14] the authors considered, instead of the differential operator D, an operator
of the generalized differentiation D, introduced by Korobeynik, and the differential operator
Dy.

Let u(z) = Y po, ukp2”® belong to Ar. Operators D", n € N, are defined by

o0
En(u(z)) = Z Cponu ck+n—1uk+nzk7
k=0

where {c;} is a sequence of complex numbers such that
Tim |e;,|Y/* < 1.
k—o0

If ¢y = k + 1, then D" = D".

Theorem 8. Let f(z) = Y 32, ax2® be an entire function of order p € (0, o) and type
o #0, cowithay #0,k=0,1,..., and klim kYP|a 'k = (gep)/?. Leta,b e C. Ifab#0,
—00

then e®P ~ ebPs in A.

Here
k

(o] oo
a
Tu(z) = T(Z ukzk) = ugog + Z 7 Uk - Co_12".
k=0 k=1

In the paper [15] the authors established the equivalence of generalized derivatives in the
sense of Gelfond-Leontyev generated by functions of a special form.

Theorem 9. Let p(z) and q(z) be polynomials:
P@) = apa? + -t anz, q@) = fa? +--- + fr,

such that p(k) # 0 and q(k) # 0 for k € N. If

then
LN k) 0 hm (k)
2 7 U (2) Ng—ﬁz u\™(z)

in Ar, 0 < R < oo, where

AP = ou(k) = Chon(k — 1) + -+ + (~1)* 2, (0),
on(z) = p(@)p(z—1)...p(x —n+1),
5 = gu(k) — Cltpulk — 1) + - + (=1)F4(0),
Yn(z) = q(z)g(z—1)...q9(z —n+1).
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Now let us consider operators
[e @]
Mru(z) = Zan?u(z)
n=0
and .
Miu(z) =Y dnDPu(z),
n=0

where generating functions f and g have a special form and
o0
L(\) =) duX"€[1, R).
n=0

Using the scheme of the paper [11] and Theorem 9, we proved the following theorem.
Theorem 10. Let p(z) and q(z) be polynomials:
p(z) = opa” + -+ oz, q(z) = Bpz? + -+ - + Prz,

such that p(k) # 0 and q(k) # 0 for k € N. If p(1) = q(1), then
1. My, ~ M} in AR, 0 < R < oo;

2. if there exists a factorisation for the equation Mpu(z) = 0, then it is true for the equation

Mlu(z) = 0.
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